Usability PatternLanguagesthe “Language”Aspect

Michael Mahemoff * & Lorraine J. Johnston

* CSSEDept.,University of Melbourne Parkville, Victoria, 3052,Australia.
T Schoolof IT, SwinkurneUniversity, Hawthorn, Victoria, 3122, Australia.

m.mahemdi@csse.unimelledu.aulorraine@it.swin.edu.au

Abstract:

The patternlanguageconcept,adaptedfrom building architectureand detailed software design,

hasrecentlybeenappliedto HCI by a numberof researchersWe argue that the “language”aspectof pattern
languagess critical and outline thirteenresearctefforts in HCI patterns. Many patterncollectionshave broad
scopes,and we argue that this resultsin patternswhich are not as interdependenas a narrov scopewould
allow. The argumentis illustratedwith our Planetpatternlanguage which helpsdevelopersreuseknowledge
for internationalisedoftware. The narrav scope,namelya focuson the needsof internationalisedisers,allows
usto produceinterdependenpatternswvhich rangein abstractiorlevel, from organisationaprocesso high-level
specificationto detailedsoftwaredesign.Thus,thelanguagesupportsa generatie, interdisciplinary approacto

reusingknowledgein HCI.

Keywords: PatternLanguageshesignPatterns DesignReuse]nternationalisationCl, Usability, Software

1 Intr oduction

Patternsfor HCI have recently been developedby
a significantnumberof researcherg¢e.g. Borchers,
1999; Sutcliffe & Dimitrova, 1999; Tidwell, 1998).
There are now several pattern collections which
are intendedto improve reuseof human-computer
interaction. Yet, there continuesto be a question
aboutthe efficacy of theapproach Somepatternsare
obvious and othersare unproven speculationsvhich
defy the term “pattern”. It is often difficult to see
how a patterncollection could offer true benefitsto
a practitioner Our view is that the critical notion
of “language”in “patternlanguage”is all too often
overlooked. In this paperwe explainwhatconstitutes
a true patternlanguageand argue that it is pattern
languagesand not “pattern collections” or isolated
patterns,which will provide the greatestiong-term
benefits¢o HCI.

In this paper we discusswhat is meant by
patternsand pattern languages,and explain how
pattern languagescan benefit HCI (Section 2).
We argue that a tight focus facilitates a well-
integratedsetof patternsandobsenethatfew present
approachesdo have narrov scopes (Section 3).
We then describethe Planet pattern languagefor

softwareinternationalisatiorywhich demonstratethe
relationshipbetweenscopeand languagecoherence
(Sectiond).

2 Background: Patterns and Pattern

Languages

Thedesignpatternapproachwasoriginally developed
for town planning and building architecture.
Christopher Alexander an architect who was
disafectedwith modernarchitecturapracticeargued
thatarigid designprocesshadled to the prevalence
of impractical solutions. He drew inspirationfrom

ancientcultures, which had evolved buildings and
town plansover generationgAlexander 1964), and
noticedtherewere recurringfeatures,or “patterns”.
With his colleagueshe published253 patternsfor

town planningand building architecture(Alexander
etal.,1977),for reusein new projects.

A patternhasdefinedfields, including Context,
Problem,Forces,and Solution. A patternis usedin
a certaindesignContext, and considersa recurring
designProblemin this context. It focuseson the
Forceswhich confrontthedesignerbeforedescribing
a Solution—a proposedapproachto the situation
which resohesthe tensionsamongforces. Consider

Alexanders A Place to Wit pattern (Alexander
et al., 1977). The contet is ary situation where
peopleare waiting for something suchasa doctor’s

sulgery. Two forces conflict: (a) patientsmust be

presenivhenthe doctoris ready but (b) thetiming of

thiseventis uncertain)Jeadingto ananxioussituation.
A suggestedsolution is to draw in peoplewho are

not waiting. One hospitalcreateda neighbourhood
playgroundwhich doubled as a children’s waiting

areasothattheyoungpatientselt ateasebeforetheir

consultation.

An individual patterncan contribute to increased
reuse,but the biggestgainsarise when patternsare
carefully combined. Oncethe solutionto a pattern
has been applied, a new contet arisesin which
more detailed problemsrequire solution. Further
patterns can be invoked to capture the problem-
solving processesnherentin this new context. A
pattern language is formed when a collection of
patternds arrangednto a network of interdependent
patternsespeciallywherehigherlevel patternsyield
contextswhichareresohedby moredetailedpatterns.
This allows a designerto apply the patternlanguage
generatiely, beginning with a specific contet, and
working through all relevant patternsto generate
the design. In A Place to Wait, the essential
solution is to mix people who are waiting with
otherswho are not waiting, and also to provide a
quiet place where people can retreatwhile waiting.
Alexander suggestsseveral ways to achieve the
first goal, by pointing to other patternsin the
language,e.g. Street Cafe. The propagatie
nature explains why Alexanders patternsvary so
widely in their granularity The languagéeginswith
the distribution of towns(City Country Fingers),
worksinto town-planning(Ri ng Roads) andbuilding
architecturg(St ai rcase as a Stage), andfinishes
at the level of detailedconstruction(Pavi ng with
Cracks Between the Stones).

To appreciate the importance of a pattern
language, it is necessaryto comprehend the
subjectve basisof patternlanguagesFar from being
the objective and exhaustve catalogueof ideasthey
may initially seem, patternsare basedheaily on
an underlying set of values. They explain how
forcesareidentifiedandresolhedaccordingo certain
principles; in doing so, they are encapsulatinga
particularapproachAlexandelidentified,valued,and
discardedpatternsin a processwhich embodiedhis
own architecturaphilosophy(Kerth& Cunningham,
1997).

To achiere the goal of a usable system, the
typical HCI approachis to adwcate the use of

guidelines. However, such guidelinescan conflict
with each other and designers need concrete
examplesillustrating how to resole theseconflicts.
Patterns illustrate how conflicting forces can be
resohed in typical design settings. Furthermore,
guidelineggenerallyhavenointer-relationalstructure.
In contrast, pattern languagesaid the designerby
beginning with high-level problems and working
down to detailedproblems. An individual pattern
cannotbeusedin thisway. Real-life projectswarrant
atightly-relatedsetof patternswhich work together
to createa consistentesign.

As long agoas 1975, Fred Brooks declaredthat
conceptuaintegrity wasa key issuein systemdesign
(Brooks Jr, 1995). By applying closely-related
patternswhich propagatefrom one to another it is
possibleto achieve this unity of approach.

A good example of a well-integrated pattern
languagefor HCI is provided by Bradac& Fletcher
(1998). The languagehas a very specific focus:
design of GUI-based forms. The first of five
patterns, Subf or m suggestsbreaking a form into
subforms.Thisis agoodexampleof astraightforvard
prescriptve pattern,andit forms the groundwork for
the restof the language.The other patternsprovide
guidanceon the decompositionof the form, and
the dynamic communicationmechanismshetween
the various components. Al ternative Subforns
suggestasing statedatato producean appropriate
subform. For example,a userwho selectsa Home
Country of USA needsa particular addressformat,
while auserwho selectsAustraliarequiresa different
format. The Addresssubformthen dependson the
Home Country field. But this opensup a new
problem:whatif the useraltersHomeCountry?The
Subf orm Sel ect i on patternshovs how to handleit
with a polling mechanism Subsequenpatternsoffer
furtherresolution.

A designercanapproactBradacet al.s language
with a very specificgoalin mind: to designa form-
style window. The patternsthen take the designer
throughthe variousdecisionswhich mustbe made.
This makes the languagegenemtive Furthermore,
a commonsetof principleslies beneattthe patterns.
Theseareimplicit and,in this languagerelateto the
usualhigh-level principlesassociateavith GUIs (e.g.
RecogniseNot Recall). The patternswork together
to producesystemswvhich adhereto theseprinciples.
It would be nonsensicato producea collection of
patternsvhich arebasednincompatibleprinciples.

Patternlanguage$iave mainly beenthedomainof
the architecturalsoftware designcommunity While
attributes suchas maintainability and reliability are

consideredysability is not often a primary concern.
However, unlike a computerprogram,userreactions
cannotbeaccuratelypredicted.Usability patternsan
documentfeatureswhich worked for usersreducing
the costlytrial-and-errorcycle.

3 Patterns in HCI: Current Reseach
Efforts

In analysingexisting researctefforts, it is helpful to
catgyoriseapproacheaccordingto threedimensions:
Level of Abstraction. Possibilitiesncludepatternsof
userinterfacespf tasks,of usersandsoon.
TargetMedium. Possibilities include corventional
GUIs, websiteshandhelds.
SpecialisedRequirements. Possibilities include
specialised application domains (banking),
specialised user characteristics (blind users),
specialisedoftwarequalities(safety-criticakystems)

Several HCI pattern collections have been
developed in recent years, in parallel to the
presentwork. Table 3 summariseghe best-knevn
contrikutions, inferring whereeachlies accordingto
theclassificatiorabove. In eachcasethedescriptions
of thedimensionshave necessarilypeensimplified.

The first five approaches(Tidwell, Brighton
Usability Group, Van Welie and Traettebeg, Coram
and Lee, Wake) addressmostly userinterfaceissues
for desktop applications. Borchers’ approach
devotes more attentionto the application domain.
The next few approaches(Cyhulski and Linden,
Bradacand Fletcher Perzeland Kane, Riehle and
Zullighoven)look at particulartypesof systemsij.e.
multimedia,softwarewith forms, websites software
for manipulatingartifacts. The two approachesther
thanours(Breed\elt-Schouteret al., Stimmel) relate
to various systems,but feature different levels of
abstractiontaskmodels developmentprocess.

At present,few pattern collections are tightly
constrainedto their target medium or specialised
requirements. Many have a target mediumof GUI
applications,and occasionalevidencethat websites
have been considered. However, this is still a
very broadcategory—while the principlesof design
for GUIs are well-understood they do vary across
platforms. Collections of patternswhich are not
tightly constrainedin some way are unlikely to
producean end productwhich is conceptuallyself-
consistent.In termsof specialisedequirementsfew
approachesonstraintheir scope.

There is certainly a benefit in capturing
successfuldesign concepts, whaterer the format.
A large catalogueof HCI patternswould be an
excellent resource for studentsand practitioners

alike. But while reusableknowledge repositories
are developed, it is important to recognise the

importance of the language aspect. A pattern
language makes generatie design possible and
contritutes significantly to the conceptualintegrity

of the end product. Furthermoreit is possiblethat
constrainingscopein someareasmay enableus to

expand scopein other areas. We are particularly
interestedin expanding the levels of abstraction
covered by a pattern language. By constraining
the target medium or specialisedrequirements, it

should be possibleto create patternswhich relate
high-level conceptgo detailedsoftware. Perhapghe

closestapproachto our work is Borchers’patterns.
In this interdisciplinaryapproachthereare separate
languages for software patterns, HCI patterns,
and domain-specificpatterns—musicalpatternsin

Borchers’ example. Our approachdiffers in that

all patternsfocus on our areaof interest—in this

case,software internationalisation.The patternsare

highly inter-dependent—the are intendedto work

effectively with eachother andwould have little use
in isolation.

Patternlanguagesfor HCI may not immediately
gain widespreadacceptance. They require more
effort to constructthan general-purposéICl pattern
collections,as eachpatternmust be consistentwith
theothers,andall mustwork towardscommongoals.
If they addressituationswith limited scopethey will
not be asbroadlyapplicable.Yet, a prerequisiteto a
“general-purposeHClI languages a seriesof highly-
focusedpatternlanguages. Such languageswould
alsobevaluableto practitionerswvorkingin thetarget
area.

4 Planet: An Example of an HCI
Pattern Language

4.1 Background

Planet is our attempt to demonstratethat, by
constraining the scope, a rich set of inter
pattern relationships can be captured. The
languagehas a specialisedrequirement: software
internationalisation. This tight focus has enabled
us to look at a variety of target media and, more
importantly to addressnultiple levels of abstraction.
The patternswere createdby studying the issues
involvedin softwareinternationalisatiomndstudying
successful features of internationalised systems.
We have documentedthe languageand a sample
application, Critique, which realisesmary of the
patterngMahemof, 2001).

As mentioned,a patternlanguageis basedon

Specialised

Interactive Applications

Functionality

Approach Level of Abstraction TargetMedium Requirements

Tidwell (1998): InteractionDesign | SystemsMultiple & single | GUI Applications, None

Patterns Ul elementsFunctionality | Websites

Brighton Usability Group (2001): | Entire systems, Multiple

Brighton Usability Pattern| & single Ul elements,| GUI Applications None

Collection Functionality

Van Welie & Traettebeg (2000): | Multiple Ul elements,| GUI Applications, None

AmsterdanPatternCollection Functionality Websites

Coramé& Lee(1996): Experiences Multiple and.smgile vl GUI Applications None
elementsFunctionality

Wake (1998): Patterns for | Multiple Ul elements, GUI Applications None

Borchers(1999): Interdisciplinary

Both High-level and low-

Canbe Domain-

Mahemof, 2001): PlanetPatterns

SoftwareDesign

DesignPatterns level, Functionality Various Specific
Cyhulski & Linden (2000): | Multiple Ul elements,| Multimedia None
MultimediaPatterns Functionality Applications
Bradac& Fletchgr(1998): Patterns Multiple Ul elements GUI Forms None
for Form Style Windows
Perzel & Kane (1999): Usability . .
Patterns for Applications on the g/llglrgglr?tsFi?ldctij:\gilte vl Websites None
World Wide Web Y
Riehle& zillighoven(1995): Tool Multlple .Ul elements, Desktop Artifact

. . Functionality Software oo . .
ConstructiorandIntegration Design Applications Manipulation
Breed\elt-Schoutenet al. (1997): Tasks Various None
Reusabletructuresn TaskModels
St|mmell (1999): Patterns for Developmeniprocess Various None
DevelopingPrototypes

. Development Process,

Mahemof & Johnston (1999; High-Level Specification,| Various Software

Internationalisatio

=]

Table 1: A Suney of RecentHCI PatternCollections

an underlyingsetof principles. Although principles
oftenremainimplicit, we now statethoseof Planets
to illustrateour point.

Developersshould AcknowledgeCultural Diversity.
Cultures differ in obvious areassuch as units of
measuremenés well asin more subtle areassuch
associalrules.

A Universal Versionis Unrealistic. Insteadof seeing
cultural diversity as a barrier, designerscan exploit
the fact that peoplewill have a particularly strong
connectionwith featuregargetingtheir own needs.

Every Personhasindividual Needs. Cultural
differencesare important only to the extent they
establish all the parametersof the software;
individuals shouldstill be free to choosetheir own

valuesof theseparameters.

Developersshould ReuseKnowledgeabout Users.
Sincethe processof learningaboutforeign cultures
is difficult andtime-consumingreusinginformation
savestime andmonsy.

Enable Then Localise For optimal efficiengy, the
coresoftwarecomponentshouldnot beduplicated.

4.2 LanguageStructure

As Figure 1 shaws, the Planetlanguageconsistsof
Patternsatthreelevelsof abstraction:

e Organisational procesgatterns help an organ-
isation track information about the cultures their
softwaresupports.

¢ High-Level SpecificationPatterns guide decisions
regarding functionality, userinterfaces, and

configurationof preferences.

e Detailed DesignPatterns supportdetailedsoftware
design, at a similar level to corventional software
designpatterns.

Thepatternsarestructuredsothatthey canbeused
generatiely: high-level patterndeadto moredetailed
patterns. This large variationin abstractionlevel is
unusualfor an HCI language but hasprecursorsn
work suchasAlexanders patterns(Alexanderet al.,

1977). _
Culture Modelling

Export ___y Culture 3 Online

Vector

i+ Schedule Model Metamodel Repository
..
o ______System
Multicultural}
ﬁl. _ System _:
Elastic Flexible |} 1 Cultural Integrated
| User-Interface Function ! Profile Preferences !

Targeted . jpiversal E E Citizen Preference
Element Default ID Group

Global Data
Model

:

Preference
Dictionary

Flexible |

| Best-Guess Independent
i Strategy !

Locale View

v

Expression
Template

Detailed Software Design
Figure 1: Map of PlanetPatternLanguageshaving three
layers: organisationalpatterns, high-level specification
patternsdetaileddesignpatterns.

4.3 Planet’s Patterns

In this section,we shav the core solution of each
pattern. Referencsto other patternsare shavn in
Typewr i ter font. First,theorganisationapatterns:

Export Schedule: Produce a schedule which
indicateswheneachtarget culturewill be supported,
andhowimportantit is to supporteachtargetculture.

Cultur e Model: Constructmodelsof cultureswhich
are relevant to your projects. When you discover
new informationabouta culture,addit to the culture
model.

Vector Metamodel: Determine the dimensions of
cultures that interest you, and characteriseeach
Culture Mdel asa vectorwith a value for each
dimension.

Online Repository: Create an online repository
accessiblerganisation-wide.UseCul t ure Mdel s
all from thesameVect or Met anodel .

Next are the high-level specification patterns.
Thesebegin with a meta-pattern,Mil ti cul tural

System which senes to structure the overall
language:

Flexible Function: When you generate a new
function, checkif it is culture-specific,and if so,
refineit to meetthe needof yourtargetcultures.

Elastic UserInterface: Designthe overall structure
for the userinterface flexibly, so that Ul elements
cansubsequentlperedefinechndrearrangedvithout
massie designchanges.

TargetedElement: For each abstract element
contained in the Elastic User-Interface
specificationprovide aninstantiatiortargetedto each
culturein theExport Schedul e.

Universal Default: For each culture-dependent
featurein the tamget system,make a default which
is universallymeaningful.

Cultural Profile: Provide a default profile for each
target culture, a profile which specifiesthe value of
eachculture-dependerieature.

Citizen ID: Determinethe users culture on first use
and permit this preferenceto persist. Selectthe
Cul tural Profile basedntheusersCitizenID.

Integrated Preferences:Integrate culture-related
preferencesvith generapreferences.

PreferenceGroup: Grouprelatedpreferencessothe
usermustmake only onechoiceto setall preferences
in thegroupto logically-relatedvalues.

A small setof patternscan be usedto drive the
detaileddesignfor systemsspecifiedaccordingto the
patternsabove. This setof patternsconstitutesthe
detailedsoftwarepatternof Planet:

Global Data Model: Encapsulatedata required to
support all cultures in a global data model,
independendf theuserinterface.
PreferenceDictionary: Encapsulatall of the users
currentpreferenceswhetherculture-specificor not,
in asingledictionary(i.e. key-valuepairs)class.
Best-Guesd ocale: Create a “global culture”
Preference Dictionary object which contains
Universal Defaults. For eachsupportedculture
mentioned in your Export Schedul e, create a
Preference Dictionary object to override the
globalPref erence Dictionary.
IndependentView: Createoneor moreviews of the
G obal Data Mdel , andstorethe users preferred
view within thePr ef erence Dictionary.
ExpressionTemplate: Encapsulate each culture-
specific expressionin a template string. Store
the template string in the culture’s Preference
Di ctionary.

Flexible Strategy: Create an abstract class which
declaresthe interfacefor the algorithm, then create
culture-specifiamplementation®f this class(based
on Gammeaetal’s (1995)St r at egy pattern).

4.4 Examplesof Patterns

In this section,a sketchis providedfor onepatternin
eachof thethreelevelsof abstraction.

Organisational Pattern: Online
Repository

Context: You have begun to maintain Cul ture
Mbdel s accordingto a selectedvect or Met anodel
(i.e. samefactorsfor eachculture).

Problem: How cana collectionof cultur emodelsbe
organisedto be useful for software projects?

Forces: (a) Organisation-wideCulture Models avoid
duplication; it is feasible and desirableto transfer
informationlearntfrom oneprojectto otherprojects.
(b) Informationaboutculturesis often discoveredin
physicallydistantlocations. (c) If developerscannot
accessnodelsguickly andeasily theinformationwill
be ignored. (d) If developerscannotupdatemodels
easily the informationwill lose accurag over time.
(e) Developeranaywishto look up aspecificCulture
Model, but they mayalsowishto exploreinformation
in other ways, e.g. comparingtwo cultures, or
consideringa singlefactoracrossaumerousultures.

Solution: Createan online repository for the entire
organisation. Composeit of Cul ture Model s
all basedon the sameVect or Met anodel .

The following guidelinesmake it easyto access
informationin the repository: (a) Provide browsing

facilities which presenteachculture andfactor (b)
Provide facilities to searchthe Cul ture Mdel s.
(c) Link from one model to anotherif it helpsto
demonstratea point of similarity or difference. (d)
Link to the original artifactsif they are online, or
identify sourcesf they arenot.

The following guidelinesmalke it easyto update
the repository: (a) Facilitate discussion among
contritutors, e.g. via a mailing list or within
the repository system. (b) Make one individual
responsiblefor managing the overall repository
promotingthe repositorywithin the organisation.(c)
Make one personresponsiblefor maintainingeach
Cul ture Model .

Examples: Fernandes(1995) contains some tables
shaving factorsversusculture. However, the text
stopsshort of exhaustvely listing this information;
the cultureslisted variesaccordingo thefactor
Ito and Nakaloji have prototyped a system for
retrieving culture-specificdetails (Ito & Nakaloji,

1996).

Resulting Context: The repository enables
developersto easily accessa corpus of culture-
specificinformation. You can usethis information
to specifyaMil ticul tural System

High-Level SpecificationPattern:
Cultural Profile

Context: You are designing a Milticul tural
System

Problem: How do you handle the configuration of
featureswhich are cultur e-specific?

Forces: (a) A Miulticultural System offers mary
choices becauseeach feature has several culture-
specificvariants all of which existin asingleversion.
Configuring can be time-consumingfor users. (b)
Most userswantto begin working on a productright
away, ratherthanexerteffort configuringit. (c) Users
may not be capableof specifying the appropriate
settinggfor somevariablesgvenin theirown country
Imagineaskinga userto staterulesfor a grammar
checler!

Solution: Provide a default profile for eachtarget

cultur e, a profile which specifiesthe value of each
cultur e-dependentfeature. As soon as the user
specifiesthe culture,they areableto begin working,
and can tweak settingslater to their idiosyncratic
preferencesvheneverdesired.
An additional benefitis that userscan dynamically
switch betweencultures. This may be of usewhen
two peoplesharethe sameapplication.It canalsobe
usefulto someuserswho work in different“culture
modes”. Somepeoplethink in one languagewhile
they work, but think in their own languageduring
recreation. The phenomenorof “code-switching”,
i.e. alternating between languages,is common
when someonehas acquired technical skills in a
foreign language(Grosjean,1982). Many people
in multinational firms may work with software in
English, but perform personal functions such as
onlinebankingandemailin their native languages.

Examples: The Locale library in Linux defines
several culture-related options, e.g. language,
curreng. However, instead of setting these
individually, the user can simply set the LC_ALL
variable,which ensuregachsettingis appropriate.
Many websitesof multinational companiesproduce
different pagesdependingon the country of origin
(e.g.Dell, 2001).Informationsuchasproductpricing
andlocal officesaretailoredto the specifiedocale.

Resulting Context: A numberof cultural profilesare
available.Ci ti zen | D providesamechanisnior the
systemto determinewhich profile to adopt.

Detailed DesignPattern: Preference
Dictionary

Context: Youhave createdheG obal Data Mdel .

Problem: There are mary preferenceswhich can
change, some culture-specificand others culture-
neutral.How do you track thoseparameterswhich
ausercanchange?

Forces:(a) Culture Mdels will change as
developerslearn more and as the actual cultures
themseles undego change. A preferencemay be
culture-neutralone day and specificto culture the
next day, or vice-versa.Youshouldnotbehinderechy
suchtransitions.(b) Theusercantailor preferenceso
their own selection so culturealoneis aninadequate
specificationof the current“preferences”. (c) This
informationwill be usedby mary modules.It should
beascompaciaspossible.

Solution: Encapsulate all of the user's current
preferences, whether cultur e-specific or not, in
a single dictionary (i.e. key-value pairs) class.
Eachparametemwhetheror not culture-specifichasa
definedkey. The preferencalictionarycanbe shared
andinspectedvhenarer somecodeneedso perform
ataskwhich depend®nthe preferences.

The nature of preferencevalueswill vary widely.

They may be a string representingsome natural-
languageext, animagefor alogo, or evenareference
to a databaseable. Therefore,a suitably flexible

mechanisnfor your programminganguagemustbe

adopted.

Since some preferencesmay form a Pref erence

G oup, this may be a recursve class. You may
have a messagereferencalictionaryinsidea global

preferencelictionary

Keysfor thepr ef er enceBundl e dictionary
eBackgroundColor

eFontFamily

eMessageBundle

eEvaluationBundle

eNumberformat

(Thepr ef er enceBundl e objectis amemberof the
Resour ceBundl e class)

Figure 2: Preference Dictionary Example: Critique’s
preferenceBundl e has key-value pairs for all user
changeabl@arameters;ulture-specifior not.

Examples: Java’s Resour ceBundl e class is used
by Critique for all preferences. The Preferences
Dialog (PreferenceDial og class) sets the
pr ef erenceBundl e object, and it is then sentto
the Art Model , which propagatest to theview. The
preferenceBundl e is a dictionary with five keys

(Figure2).

In Java, the default values are also specified
in the ResourceBundl e. Note there is an
Eval uati onBundl e andMessageBundl e. Theseare
nestedResour ceBundl es.

Thevi mtext editorhasdozensof options,including
culture-relatedbptionssuchasright-left editing and
alternatve keymaps. From the users perspectie,
these are defined in the same contt as all
other options,andthereforefollow the | nt egr at ed
Pref er ences pattern.

Resulting Context: Youhavedeclaredheparameters
by which your software will vary. Now
you need to define culture-specific information
relating to the preferences with Best- Quess
Local es. If your preferencesvary according
to the functionality performed, create Fl exi bl e
Strat egi es. Complement your d obal Data
Mobdel with | ndependent Vi ews.

5 Discussion

HCI patternsresearchis still relatively new, and
researcherbave beendebatingthe basicconceptsof
patterns. Marny existing patterncollectionsdo not
exploit the “language”propertyof patterngo alarge
degree. Patternlanguageswhile they arelesssimple
to produce provide a way to achiese the designgoal
of conceptualintegrity, thereby producinga more
consistenuserinterface,andbettersupportfor reuse
andmaintainability

Planetdemonstratesvhat we meanby a pattern
language. To createa tightly-connectedanguage,
we constrainedour scopeto focus specifically on
supporting internationalaudiences. The language
is based on an explicit set of principles, with
the patternsguiding the developerin a direction
which adheresto these principles. For instance,
the patternsguiding preferenceconfigurationshov
how to considercultural factors(“Designersshould
AcknowledgeCultural Diversity”), while keepingthe
settingsflexible (“Every Personis an Individual”).
The narrav scope meansthat a broad range of
issuescould be covered. Organisationalpatterns
facilitate the ongoing processof learning about
culturesanddocumentinghem.Onceanorganisation
has identified its target cultures and suficiently
investigatedheir needs high-level specificationcan
proceed. The patternsat this next level address
software functionality, userinterface design, and
configuratiorof preferencesDetaileddesignpatterns
follow from the high-level specification.

Pattern languagesfulfill mary of the goals of
HCI. Becausethey can crosslevels of abstraction,

they canfacilitatea moreintegrated interdisciplinary
approach. This interdisciplinary approachis also
evident in their concretenature,which makes them
approachabléor non-HCl specialistsincluding end-
users.

Patternlanguageslsosupportaniterative design
process:a well-integratedlanguageallows software
to be developedwith somepatterns,thenimproved
with more patternsrom the languageat a later date.
Thecompromisas amorelimited scopethepatterns
are not applicableto all situations. Whethera more
generallanguagecan be createdwhich still hasa
strongsensenf connectioramongpatternss anopen
researchopic. In the meantime mostorganisations
create applicationswhich are very similar to one
another They could benefitby capturingtheir own
patternsat differing levels of abstractionand using
themasabasisfor interdisciplinarywork andongoing
processmprovement.

References

Alexander C. (1964), Notes on the Synthesisof Form,
Harvard University PressCambridge MA.

Alexander C., Ishikawa, S., Silverstein, M., Jacobson,
M., Fiksdahl-King,l. & Angel, S. (1977),A Pattern
Languaye, Oxford University PressNew York.

Borchers, J. O. (1999), Designing Interactve Music
Systems: A Pattern Approach,in H. Bullinger &
J. Ziegler (eds.), 8th International Confeence on
Human-Computerinteraction Lawrence Erlbaum
Associates|.ondon,pp.276—280.

Bradac, M. & Fletcher B. (1998), A Pattern Language
for Developing Form Style Windows, in R. Martin,
D. Riehle& F. Buschmanr{eds.),PatternLanguaes
of Program Design 3, Addison-Wesley Longman,
Reading MA, pp.347-357.

Breedelt-Schouten). M., Paterrd, F. & Severijns, C. A.
(1997),Reusablestructuresn TaskModels,in H. D.
Harrison& J. C. Torres(eds.),Design,Specification
and\erificationof InteractiveSystemsSpringer New
York, pp.225-238.

Brighton Usability Group (2001), “The Brighton Patterns
Collection”. Maintainedby Griffiths, R. N. at http:
IIwww.it.bton.ac.uk/cil/usability/patterns/Accessed
Februaryl8,2001.

Brooks Jr, F. P. (1995), The Mythical Man-Month 20th
anniersaryedition, Addison-\W\esley.

Coram, T. & Lee, J. (1996), Experiences— A Pattern
Languagefor User Interface Design, in Pattern
Languaes of Program Design 1996 Proceedings
http://www.maplefish.com/todd/papergferiences/
Experiences.htmAccessedugust5, 1999.

Cyhulski, J. & Linden, T. (2000), ComposingMultimedia
Artifacts for Reuse,in N. Harrison, B. Foote &
H. Rohnert(eds.), Pattern Languayes of Program
Design4, Addison-Wesley Longman pp.461-488.

Dell (2001), “Dell Computer Website”.
http://www.dell.com.Accessed-ebruaryl8,2001.

Fernandes, T. (1995), Global Interface Design AP
ProfessionalChesnutdill, MA.

Gamma,E., Helm, R., JohnsonR. & Vlissides,J. (1995),
Design Patterns: Elementsof Reusable Object-
OrientedSoftwae, Addison-Wesle/, ReadingMA.

Grosjean,J. (1982), Life with Two Languayes Harvard
University PressCambridge MA.

Ito, M. & Nakaloji, K. (1996),Impactof Cultureon User
Interface Design,in E. M. del Galdo & J. Nielsen
(eds.), International User Interfaces JohnWiley &
Sons,New York, chapter6, pp.105-126.

Kerth, N. L. & CunninghamW. (1997), “Using Patterns
to Improve Our ArchitecturalVision”, IEEE Softwae
14(1), 53-59.

Mahemof, M. (2001), “Weaing High-Level and
Low-Level Patterns: An Extended Version
of the Planet Pattern Language”. Technical
Report 2001/21, CSSE Dept., University of
Melbourne. http://www.cs.mu.oz.au/tsubmit/test/
cover.db/muTR_200121.html.

Mahemof, M. J. & Johnston,L. J. (1999), The Planet
Pattern Languagefor Software Internationalisation,
in PatternLanguaesof Programs1999Proceedings
Monticello, IL. http://jerrycs.uiuc.edu/ plop/plop99/
proceedings/Accessedeptembeb, 1999.

Perzel, K. & Kane, D. (1999), Usability Patterns for
Applications on the World Wide Web, in Pattern
Languaes of Program Design 1999 Proceedings
Monticello, IL. http://jerry.cs.uiuc.edu/"plop/plop99/
proceedings/AccessedSeptembel 8,1999.

Riehle,D. & Zullighoven, H. (1995),A PatternLanguage
for Tool Constructionand Integration Basedon the
Tools and Materials Metaphoy in J. O. Coplien &
D. C. Schmidt(eds.),Pattern Languayes of Program
Design Addison-Weésley, ReadingMA, pp.9-42.

Stimmel, C. L. (1999), Hold Me, Thrill Me, Kiss
Me, Kill Me: Patternsfor Developing Effective
Concept Prototypes, in Pattern Languaes of
Program Design 1999 ProceedingsMonticello, IL.
http://jerry.cs.uiuc.edu/"plop/plop99/proceedings/.
Accessedeptembel8,1999.

Sutcliffe, A. & Dimitrova, M. (1999), Patterns, Claims Van Welie, M. & Traettebeg, H. (2000), Interaction

and Multimedia, in M. A. Sasse& C. Johnson Patternsin User Interfaces, in Pattern Languaes
(eds.), Human-Computeinteraction: Interact '99, of Programs 2000 Proceedings Monticello, IL.
10S Presdfor IFIP), Amsterdampp.329-335. http://monley.icu.ac.kr/sslab/proceeding/PLoP2000/-
papers/papersingditml. Accessed October 27,
Tidwell, J. (1998), Interaction Patterns, in Pattern 2000.
Languaes of Program Design 1998 Proceedings Wake, W. C. (1998), “Patterns for Interactie
Monticello, IL. http://jerry.cs.uiuc.edu/ plop/plop98/ Applications”. http://jerry.cs.uiuc.edu/plop/plop98/

final submissions/AccessedMarch30,1999. final’ submissions/Accessedlunel9, 1999.

