
UsabilityPatternLanguages:the“Language”Aspect

Michael Mahemoff
�

& Lorraine J. Johnston†
�

CSSEDept.,Universityof Melbourne,Parkville, Victoria,3052,Australia.
† Schoolof IT, SwinburneUniversity, Hawthorn,Victoria,3122,Australia.

m.mahemoff@csse.unimelb.edu.au,lorraine@it.swin.edu.au

Abstract: The patternlanguageconcept,adaptedfrom building architectureand detailedsoftware design,
hasrecentlybeenappliedto HCI by a numberof researchers.We argue that the “language”aspectof pattern
languagesis critical andoutline thirteenresearchefforts in HCI patterns.Many patterncollectionshave broad
scopes,and we argue that this resultsin patternswhich are not as interdependentas a narrow scopewould
allow. The argumentis illustratedwith our Planetpatternlanguage,which helpsdevelopersreuseknowledge
for internationalisedsoftware. Thenarrow scope,namelya focuson the needsof internationalisedusers,allows
us to produceinterdependentpatternswhich rangein abstractionlevel, from organisationalprocessto high-level
specificationto detailedsoftwaredesign.Thus,thelanguagesupportsa generative, interdisciplinary, approachto
reusingknowledgein HCI.

Keywords: PatternLanguages,DesignPatterns,DesignReuse,Internationalisation,HCI, Usability, Software

1 Intr oduction

Patternsfor HCI have recently beendevelopedby
a significantnumberof researchers(e.g. Borchers,
1999; Sutcliffe & Dimitrova,1999; Tidwell, 1998).
There are now several pattern collections which
are intendedto improve reuseof human-computer
interaction. Yet, there continuesto be a question
abouttheefficacy of theapproach.Somepatternsare
obvious andothersareunprovenspeculationswhich
defy the term “pattern”. It is often difficult to see
how a patterncollectioncould offer true benefitsto
a practitioner. Our view is that the critical notion
of “language”in “pattern language”is all too often
overlooked.In thispaper, weexplainwhatconstitutes
a true patternlanguageand argue that it is pattern
languages,and not “pattern collections” or isolated
patterns,which will provide the greatestlong-term
benefitsto HCI.

In this paper, we discuss what is meant by
patterns and pattern languages,and explain how
pattern languagescan benefit HCI (Section 2).
We argue that a tight focus facilitates a well-
integratedsetof patterns,andobservethatfew present
approachesdo have narrow scopes (Section 3).
We then describethe Planet pattern languagefor

softwareinternationalisation,which demonstratesthe
relationshipbetweenscopeand languagecoherence
(Section4).

2 Background: Patterns and Pattern
Languages

Thedesignpatternapproachwasoriginally developed
for town planning and building architecture.
Christopher Alexander, an architect who was
disaffectedwith modernarchitecturalpractice,argued
that a rigid designprocesshadled to the prevalence
of impracticalsolutions. He drew inspiration from
ancient cultures, which had evolved buildings and
town plansover generations(Alexander, 1964),and
noticedtherewere recurringfeatures,or “patterns”.
With his colleagues,he published253 patternsfor
town planningand building architecture(Alexander
et al., 1977),for reusein new projects.

A patternhasdefinedfields, including Context,
Problem,Forces,andSolution. A patternis usedin
a certaindesignContext, and considersa recurring
designProblemin this context. It focuseson the
Forceswhichconfrontthedesigner, beforedescribing
a Solution—a proposedapproachto the situation
which resolvesthe tensionsamongforces. Consider

Alexander’s A Place to Wait pattern (Alexander
et al., 1977). The context is any situation where
peoplearewaiting for something,suchasa doctor’s
surgery. Two forces conflict: (a) patientsmust be
presentwhenthedoctoris ready, but (b) thetiming of
thiseventis uncertain,leadingto ananxioussituation.
A suggestedsolution is to draw in peoplewho are
not waiting. One hospitalcreateda neighbourhood
playgroundwhich doubled as a children’s waiting
area,sothattheyoungpatientsfelt ateasebeforetheir
consultation.

An individual patterncancontribute to increased
reuse,but the biggestgainsarisewhen patternsare
carefully combined. Oncethe solution to a pattern
has been applied, a new context arises in which
more detailed problemsrequire solution. Further
patterns can be invoked to capture the problem-
solving processesinherent in this new context. A
pattern language is formed when a collection of
patternsis arrangedinto a network of interdependent
patterns,especiallywherehigher-level patternsyield
contextswhichareresolvedbymoredetailedpatterns.
This allows a designerto apply the patternlanguage
generatively, beginning with a specificcontext, and
working through all relevant patterns to generate
the design. In A Place to Wait, the essential
solution is to mix people who are waiting with
otherswho are not waiting, and also to provide a
quiet placewherepeoplecan retreatwhile waiting.
Alexander suggestsseveral ways to achieve the
first goal, by pointing to other patterns in the
language, e.g. Street Cafe. The propagative
nature explains why Alexander’s patternsvary so
widely in their granularity. Thelanguagebeginswith
the distribution of towns(City Country Fingers),
worksinto town-planning(Ring Roads) andbuilding
architecture(Staircase as a Stage), andfinishes
at the level of detailedconstruction(Paving with
Cracks Between the Stones).

To appreciate the importance of a pattern
language, it is necessary to comprehend the
subjective basisof patternlanguages.Far from being
the objective andexhaustive catalogueof ideasthey
may initially seem, patternsare basedheavily on
an underlying set of values. They explain how
forcesareidentifiedandresolvedaccordingto certain
principles; in doing so, they are encapsulatinga
particularapproach.Alexanderidentified,valued,and
discardedpatternsin a processwhich embodiedhis
own architecturalphilosophy(Kerth& Cunningham,
1997).

To achieve the goal of a usable system, the
typical HCI approachis to advocate the use of

guidelines. However, such guidelinescan conflict
with each other, and designers need concrete
examplesillustrating how to resolve theseconflicts.
Patterns illustrate how conflicting forces can be
resolved in typical design settings. Furthermore,
guidelinesgenerallyhavenointer-relationalstructure.
In contrast,pattern languagesaid the designerby
beginning with high-level problems and working
down to detailedproblems. An individual pattern
cannotbeusedin this way. Real-lifeprojectswarrant
a tightly-relatedsetof patterns,which work together
to createa consistentdesign.

As long agoas1975,FredBrooksdeclaredthat
conceptualintegrity wasa key issuein systemdesign
(Brooks Jr., 1995). By applying closely-related
patternswhich propagatefrom one to another, it is
possibleto achievethis unity of approach.

A good example of a well-integrated pattern
languagefor HCI is provided by Bradac& Fletcher
(1998). The languagehas a very specific focus:
design of GUI-based forms. The first of five
patterns,Subform, suggestsbreaking a form into
subforms.Thisis agoodexampleof astraightforward
prescriptive pattern,andit forms thegroundwork for
the restof the language.The otherpatternsprovide
guidanceon the decompositionof the form, and
the dynamic communicationmechanismsbetween
the various components. Alternative Subforms
suggestsusing statedatato producean appropriate
subform. For example,a userwho selectsa Home
Country of USA needsa particularaddressformat,
while auserwhoselectsAustraliarequiresadifferent
format. The Addresssubformthen dependson the
Home Country field. But this opens up a new
problem:what if theuseraltersHomeCountry?The
Subform Selection patternshows how to handleit
with a polling mechanism.Subsequentpatternsoffer
furtherresolution.

A designercanapproachBradacet al.’s language
with a very specificgoal in mind: to designa form-
style window. The patternsthen take the designer
throughthe variousdecisionswhich must be made.
This makes the languagegenerative. Furthermore,
a commonsetof principleslies beneaththepatterns.
Theseareimplicit and,in this language,relateto the
usualhigh-level principlesassociatedwith GUIs(e.g.
RecogniseNot Recall). The patternswork together
to producesystemswhich adhereto theseprinciples.
It would be nonsensicalto producea collection of
patternswhicharebasedon incompatibleprinciples.

Patternlanguageshavemainlybeenthedomainof
the architecturalsoftwaredesigncommunity. While
attributessuchas maintainabilityand reliability are

considered,usability is not often a primary concern.
However, unlike a computerprogram,userreactions
cannotbeaccuratelypredicted.Usabilitypatternscan
documentfeatureswhich worked for users,reducing
thecostlytrial-and-errorcycle.

3 Patterns in HCI: Curr ent Research
Efforts

In analysingexisting researchefforts, it is helpful to
categoriseapproachesaccordingto threedimensions:

Level of Abstraction. Possibilitiesincludepatternsof
user-interfaces,of tasks,of users,andsoon.

Target Medium. Possibilities include conventional
GUIs,websites,handhelds.

SpecialisedRequirements.Possibilities include
specialised application domains (banking),
specialised user characteristics (blind users),
specialisedsoftwarequalities(safety-criticalsystems)

Several HCI pattern collections have been
developed in recent years, in parallel to the
presentwork. Table 3 summarisesthe best-known
contributions,inferring whereeachlies accordingto
theclassificationabove. In eachcase,thedescriptions
of thedimensionshavenecessarilybeensimplified.

The first five approaches(Tidwell, Brighton
Usability Group,Van Welie andTraetteberg, Coram
andLee, Wake) addressmostly user-interfaceissues
for desktop applications. Borchers’ approach
devotes more attention to the application domain.
The next few approaches(Cybulski and Linden,
Bradacand Fletcher, Perzeland Kane, Riehle and
Züllighoven) look at particulartypesof systems,i.e.
multimedia,softwarewith forms,websites,software
for manipulatingartifacts.Thetwo approachesother
thanours(Breedvelt-Schoutenet al., Stimmel)relate
to various systems,but feature different levels of
abstraction:taskmodels,developmentprocess.

At present, few pattern collections are tightly
constrainedto their target medium or specialised
requirements.Many have a target mediumof GUI
applications,and occasionalevidencethat websites
have been considered. However, this is still a
very broadcategory—while the principlesof design
for GUIs are well-understood,they do vary across
platforms. Collections of patternswhich are not
tightly constrainedin some way are unlikely to
producean end productwhich is conceptuallyself-
consistent.In termsof specialisedrequirements,few
approachesconstraintheir scope.

There is certainly a benefit in capturing
successfuldesign concepts, whatever the format.
A large catalogueof HCI patterns would be an
excellent resource for students and practitioners

alike. But while reusableknowledge repositories
are developed, it is important to recognise the
importance of the language aspect. A pattern
language makes generative design possible and
contributes significantly to the conceptualintegrity
of the end product. Furthermore,it is possiblethat
constrainingscopein someareasmay enableus to
expand scopein other areas. We are particularly
interested in expanding the levels of abstraction
covered by a pattern language. By constraining
the target medium or specialisedrequirements,it
should be possibleto createpatternswhich relate
high-level conceptsto detailedsoftware. Perhapsthe
closestapproachto our work is Borchers’patterns.
In this interdisciplinaryapproach,thereareseparate
languages for software patterns, HCI patterns,
and domain-specificpatterns—musicalpatterns in
Borchers’ example. Our approachdiffers in that
all patternsfocus on our area of interest—in this
case,software internationalisation.The patternsare
highly inter-dependent—they are intendedto work
effectively with eachother, andwould have little use
in isolation.

Pattern languages for HCI may not immediately
gain widespreadacceptance. They require more
effort to constructthangeneral-purposeHCI pattern
collections,as eachpatternmust be consistentwith
theothers,andall mustwork towardscommongoals.
If they addresssituationswith limited scope,they will
not be asbroadlyapplicable.Yet, a prerequisiteto a
“general-purpose”HCI languageis aseriesof highly-
focusedpattern languages. Such languageswould
alsobevaluableto practitionersworking in thetarget
area.

4 Planet: An Example of an HCI
Pattern Language

4.1 Background
Planet is our attempt to demonstratethat, by
constraining the scope, a rich set of inter-
pattern relationships can be captured. The
languagehas a specialisedrequirement: software
internationalisation. This tight focus has enabled
us to look at a variety of target media and, more
importantly, to addressmultiple levelsof abstraction.
The patternswere createdby studying the issues
involvedin softwareinternationalisationandstudying
successful features of internationalised systems.
We have documentedthe languageand a sample
application, Critique, which realisesmany of the
patterns(Mahemoff, 2001).

As mentioned,a pattern languageis basedon

Approach Level of Abstraction TargetMedium
Specialised
Requirements

Tidwell (1998): InteractionDesign
Patterns

Systems,Multiple & single
UI elements,Functionality

GUI Applications,
Websites

None

Brighton Usability Group (2001):
Brighton Usability Pattern
Collection

Entire systems, Multiple
& single UI elements,
Functionality

GUI Applications None

Van Welie & Traetteberg (2000):
AmsterdamPatternCollection

Multiple UI elements,
Functionality

GUI Applications,
Websites

None

Coram& Lee(1996):Experiences
Multiple and single UI
elements,Functionality

GUI Applications None

Wake (1998): Patterns for
InteractiveApplications

Multiple UI elements,
Functionality

GUI Applications None

Borchers(1999): Interdisciplinary
DesignPatterns

Both High-level and low-
level, Functionality

Various
Canbe Domain-
Specific

Cybulski & Linden (2000):
MultimediaPatterns

Multiple UI elements,
Functionality

Multimedia
Applications

None

Bradac& Fletcher(1998):Patterns
for FormStyleWindows

Multiple UI elements GUI Forms None

Perzel & Kane (1999): Usability
Patterns for Applications on the
World WideWeb

Multiple and single UI
elements,Functionality

Websites None

Riehle& Züllighoven(1995): Tool
ConstructionandIntegration

Multiple UI elements,
Functionality, Software
Design

Desktop
Applications

Artif act
Manipulation

Breedvelt-Schoutenet al. (1997):
ReusableStructuresin TaskModels

Tasks Various None

Stimmel (1999): Patterns for
DevelopingPrototypes

Developmentprocess Various None

Mahemoff & Johnston (1999;
Mahemoff, 2001):PlanetPatterns

Development Process,
High-Level Specification,
SoftwareDesign

Various
Software
Internationalisation

Table1: A Survey of RecentHCI PatternCollections

an underlyingsetof principles. Although principles
oftenremainimplicit, we now statethoseof Planet’s
to illustrateourpoint.

DevelopersshouldAcknowledgeCultural Diversity.
Cultures differ in obvious areassuch as units of
measurementas well as in more subtle areassuch
associalrules.

A UniversalVersion is Unrealistic. Insteadof seeing
cultural diversity as a barrier, designerscan exploit
the fact that peoplewill have a particularly strong
connectionwith featurestargetingtheir own needs.

Every PersonhasIndi vidual Needs.Cultural
differencesare important only to the extent they
establish all the parameters of the software;
individuals shouldstill be free to choosetheir own

valuesof theseparameters.
Developersshould ReuseKnowledgeabout Users.
Sincethe processof learningaboutforeign cultures
is difficult andtime-consuming,reusinginformation
savestimeandmoney.

EnableThen Localise For optimal efficiency, the
coresoftwarecomponentsshouldnot beduplicated.

4.2 LanguageStructure
As Figure 1 shows, the Planetlanguageconsistsof
Patternsat threelevelsof abstraction:
� Organisationalprocesspatterns help an organ-
isation track information about the cultures their
softwaresupports.
� High-Level SpecificationPatterns guide decisions
regarding functionality, user-interfaces, and

configurationof preferences.
� DetailedDesignPatterns supportdetailedsoftware
design, at a similar level to conventional software
designpatterns.

Thepatternsarestructuredsothatthey canbeused
generatively: high-levelpatternsleadto moredetailed
patterns. This large variation in abstractionlevel is
unusualfor an HCI language,but hasprecursorsin
work suchasAlexander’s patterns(Alexanderet al.,
1977).

Export
Schedule

Culture
Model

Vector
Metamodel

Online
Repository

Elastic
User-Interface

Flexible
Function

Cultural
Profile

Integrated
Preferences

Targeted
Element

Universal
Default

Citizen
ID

Multicultural
System

����� � �	��

�����	
�� � � ���

�������
��

�������
�����
� �� ����
 ��
� �� ����
!����� "�� �#�	�� �� � ���

Preference
Group

Global Data
Model

Preference
Dictionary

Best-Guess
Locale

Independent
View

Flexible
Strategy

$
�� �� �
��%�	� "�� &' ���
 $
���� �
�

Expression
Template

Figure 1: Map of PlanetPatternLanguage,showing three
layers: organisationalpatterns, high-level specification
patterns,detaileddesignpatterns.

4.3 Planet’s Patterns
In this section,we show the core solution of each
pattern. Referencsto other patternsare shown in
Typewriter font. First, theorganisationalpatterns:

Export Schedule: Produce a schedule which
indicateswheneachtargetculturewill be supported,
andhowimportantit is to supporteachtargetculture.

Cultur eModel: Constructmodelsof cultureswhich
are relevant to your projects. When you discover
new informationabouta culture,addit to theculture
model.

Vector Metamodel: Determine the dimensions of
cultures that interest you, and characteriseeach
Culture Model as a vector with a value for each
dimension.

Online Repository: Create an online repository
accessibleorganisation-wide.UseCulture Models
all from thesameVector Metamodel.

Next are the high-level specification patterns.
Thesebegin with a meta-pattern,Multicultural

System, which serves to structure the overall
language:

Flexible Function: When you generate a new
function, check if it is culture-specific,and if so,
refineit to meettheneedsof your targetcultures.

Elastic User-Interface: Design the overall structure
for the user-interface flexibly, so that UI elements
cansubsequentlyberedefinedandrearrangedwithout
massivedesignchanges.

TargetedElement: For each abstract element
contained in the Elastic User-Interface
specification,provideaninstantiationtargetedto each
culturein theExport Schedule.

UniversalDefault: For each culture-dependent
featurein the target system,make a default which
is universallymeaningful.

Cultural Profile: Provide a default profile for each
target culture,a profile which specifiesthe valueof
eachculture-dependentfeature.

Citizen ID: Determinethe user’s culture on first use
and permit this preferenceto persist. Select the
Cultural Profile basedon theuser’sCitizenID.

Integrated Preferences: Integrate culture-related
preferenceswith generalpreferences.

PreferenceGroup: Grouprelatedpreferences,sothe
usermustmakeonly onechoiceto setall preferences
in thegroupto logically-relatedvalues.

A small set of patternscan be usedto drive the
detaileddesignfor systemsspecifiedaccordingto the
patternsabove. This set of patternsconstitutesthe
detailedsoftwarepatternsof Planet:

Global Data Model: Encapsulatedata required to
support all cultures in a global data model,
independentof theuser-interface.

PreferenceDictionary: Encapsulateall of the user’s
currentpreferences,whetherculture-specificor not,
in asingledictionary(i.e. key-valuepairs)class.

Best-GuessLocale: Create a “global culture”
Preference Dictionary object which contains
Universal Defaults. For eachsupportedculture
mentioned in your Export Schedule, create a
Preference Dictionary object to override the
globalPreference Dictionary.

IndependentView: Createoneor moreviews of the
Global Data Model, andstorethe user’s preferred
view within thePreference Dictionary.

ExpressionTemplate: Encapsulate each culture-
specific expression in a template string. Store
the template string in the culture’s Preference
Dictionary.

Flexible Strategy: Create an abstract class which
declaresthe interfacefor the algorithm, then create
culture-specificimplementationsof this class(based
on Gammaetal.’s (1995)Strategy pattern).

4.4 Examplesof Patterns
In this section,a sketchis providedfor onepatternin
eachof thethreelevelsof abstraction.

OrganisationalPattern: Online
Repository

Context: You have begun to maintain Culture
Models accordingto a selectedVector Metamodel
(i.e. samefactorsfor eachculture).

Problem: How cana collectionof cultur emodelsbe
organisedto be useful for softwareprojects?

Forces: (a) Organisation-wideCulture Models avoid
duplication; it is feasibleand desirableto transfer
informationlearntfrom oneprojectto otherprojects.
(b) Informationaboutculturesis often discoveredin
physicallydistantlocations.(c) If developerscannot
accessmodelsquickly andeasily, theinformationwill
be ignored. (d) If developerscannotupdatemodels
easily, the informationwill loseaccuracy over time.
(e)Developersmaywish to look upaspecificCulture
Model,but they mayalsowishto exploreinformation
in other ways, e.g. comparing two cultures, or
consideringa singlefactoracrossnumerouscultures.

Solution: Createan online repository for the entire
organisation. Composeit of Culture Models
all basedon the sameVector Metamodel.
The following guidelines make it easy to access
information in the repository: (a) Provide browsing
facilities which presenteachculture and factor. (b)
Provide facilities to searchthe Culture Models.
(c) Link from one model to anotherif it helps to
demonstratea point of similarity or difference. (d)
Link to the original artifacts if they are online, or
identify sourcesif they arenot.
The following guidelines make it easy to update
the repository: (a) Facilitate discussion among
contributors, e.g. via a mailing list or within
the repository system. (b) Make one individual
responsible for managing the overall repository,
promotingtherepositorywithin theorganisation.(c)
Make one personresponsiblefor maintainingeach
Culture Model.

Examples: Fernandes(1995) contains some tables
showing factorsversusculture. However, the text
stopsshort of exhaustively listing this information;
thecultureslistedvariesaccordingto thefactor.
Ito and Nakakoji have prototyped a system for
retrieving culture-specificdetails (Ito & Nakakoji,

1996).
ResultingContext: The repository enables
developers to easily accessa corpus of culture-
specific information. You can usethis information
to specifyaMulticultural System.

High-Level SpecificationPattern:
Cultural Profile

Context: You are designing a Multicultural
System.

Problem: How do you handle the configuration of
featureswhich arecultur e-specific?

Forces: (a) A Multicultural System offers many
choices becauseeach feature has several culture-
specificvariants,all of whichexist in asingleversion.
Configuring can be time-consumingfor users. (b)
Most userswant to begin working on a productright
away, ratherthanexerteffort configuringit. (c) Users
may not be capableof specifying the appropriate
settingsfor somevariables,evenin theirown country.
Imagineaskinga userto staterules for a grammar-
checker!

Solution: Provide a default profile for each target
cultur e, a profile which specifiesthe value of each
cultur e-dependentfeature. As soon as the user
specifiesthe culture,they areableto begin working,
and can tweak settings later to their idiosyncratic
preferenceswheneverdesired.
An additionalbenefit is that userscan dynamically
switch betweencultures. This may be of usewhen
two peoplesharethesameapplication.It canalsobe
useful to someuserswho work in different“culture
modes”. Somepeoplethink in one languagewhile
they work, but think in their own languageduring
recreation. The phenomenonof “code-switching”,
i.e. alternating between languages,is common
when someonehas acquired technical skills in a
foreign language(Grosjean,1982). Many people
in multinational firms may work with software in
English, but perform personal functions such as
onlinebankingandemail in their native languages.

Examples: The Locale library in Linux defines
several culture-related options, e.g. language,
currency. However, instead of setting these
individually, the user can simply set the LC ALL
variable,which ensureseachsettingis appropriate.
Many websitesof multinationalcompaniesproduce
different pagesdependingon the country of origin
(e.g.Dell, 2001).Informationsuchasproductpricing
andlocalofficesaretailoredto thespecifiedlocale.

ResultingContext: A numberof culturalprofilesare
available.Citizen ID providesa mechanismfor the
systemto determinewhichprofile to adopt.

DetailedDesignPattern: Preference
Dictionary

Context: You havecreatedtheGlobal Data Model.
Problem: There are many preferenceswhich can
change, some culture-specificand others culture-
neutral.How do you track thoseparameterswhich
a usercanchange?

Forces: (a) Culture Models will change as
developers learn more and as the actual cultures
themselves undergo change. A preferencemay be
culture-neutralone day and specific to culture the
next day, orvice-versa.Youshouldnotbehinderedby
suchtransitions.(b) Theusercantailor preferencesto
their own selection,soculturealoneis aninadequate
specificationof the current “preferences”. (c) This
informationwill beusedby many modules.It should
beascompactaspossible.

Solution: Encapsulate all of the user’s curr ent
preferences, whether cultur e-specific or not, in
a single dictionary (i.e. key-value pairs) class.
Eachparameter, whetheror notculture-specific,hasa
definedkey. Thepreferencedictionarycanbeshared
andinspectedwhenever somecodeneedsto perform
a taskwhich dependson thepreferences.
The nature of preferencevalues will vary widely.
They may be a string representingsome natural-
languagetext, animagefor a logo,or evenareference
to a databasetable. Therefore,a suitably flexible
mechanismfor your programminglanguagemustbe
adopted.
Since some preferencesmay form a Preference
Group, this may be a recursive class. You may
have a messagepreferencedictionaryinsidea global
preferencedictionary.

Keys for thepreferenceBundle dictionary
� BackgroundColor
� FontFamily
� MessageBundle
� EvaluationBundle
� NumberFormat
(ThepreferenceBundle objectis amemberof the
ResourceBundle class)

Figure 2: Preference Dictionary Example:Critique’s
preferenceBundle has key-value pairs for all user-
changeableparameters,culture-specificor not.

Examples: Java’s ResourceBundle class is used
by Critique for all preferences. The Preferences
Dialog (PreferenceDialog class) sets the
preferenceBundle object, and it is then sent to
the ArtModel, which propagatesit to the view. The
preferenceBundle is a dictionary with five keys

(Figure2).
In Java, the default values are also specified
in the ResourceBundle. Note there is an
EvaluationBundle andMessageBundle. Theseare
nestedResourceBundles.
Thevim text editorhasdozensof options,including
culture-relatedoptionssuchas right-left editing and
alternative keymaps. From the user’s perspective,
these are defined in the same context as all
otheroptions,and thereforefollow the Integrated
Preferences pattern.

ResultingContext: Youhavedeclaredtheparameters
by which your software will vary. Now
you need to define culture-specific information
relating to the preferences with Best-Guess
Locales. If your preferencesvary according
to the functionality performed, create Flexible
Strategies. Complement your Global Data
Model with Independent Views.

5 Discussion
HCI patternsresearchis still relatively new, and
researchershave beendebatingthebasicconceptsof
patterns. Many existing patterncollectionsdo not
exploit the“language”propertyof patternsto a large
degree.Patternlanguages,while they arelesssimple
to produce,provide a way to achieve thedesigngoal
of conceptualintegrity, thereby producing a more
consistentuserinterface,andbettersupportfor reuse
andmaintainability.

Planetdemonstrateswhat we meanby a pattern
language. To createa tightly-connectedlanguage,
we constrainedour scopeto focus specifically on
supporting internationalaudiences. The language
is based on an explicit set of principles, with
the patternsguiding the developer in a direction
which adheresto these principles. For instance,
the patternsguiding preferenceconfigurationshow
how to considercultural factors(“Designersshould
AcknowledgeCulturalDiversity”), while keepingthe
settingsflexible (“Every Personis an Individual”).
The narrow scope means that a broad range of
issuescould be covered. Organisationalpatterns
facilitate the ongoing process of learning about
culturesanddocumentingthem.Onceanorganisation
has identified its target cultures and sufficiently
investigatedtheir needs,high-level specificationcan
proceed. The patternsat this next level address
software functionality, user-interface design, and
configurationof preferences.Detaileddesignpatterns
follow from thehigh-level specification.

Pattern languagesfulfill many of the goals of
HCI. Becausethey can crosslevels of abstraction,

they canfacilitateamoreintegrated,interdisciplinary
approach. This interdisciplinary approachis also
evident in their concretenature,which makes them
approachablefor non-HCIspecialists,includingend-
users.

Patternlanguagesalsosupportan iterative design
process:a well-integratedlanguageallows software
to be developedwith somepatterns,then improved
with morepatternsfrom the languageat a laterdate.
Thecompromiseis amorelimited scope;thepatterns
arenot applicableto all situations. Whethera more
general languagecan be createdwhich still has a
strongsenseof connectionamongpatternsis anopen
researchtopic. In the meantime,mostorganisations
createapplicationswhich are very similar to one
another. They could benefitby capturingtheir own
patternsat differing levels of abstraction,andusing
themasabasisfor interdisciplinarywork andongoing
processimprovement.

References
Alexander, C. (1964), Notes on the Synthesisof Form,

HarvardUniversityPress,Cambridge,MA.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson,
M., Fiksdahl-King,I. & Angel, S. (1977),A Pattern
Language, OxfordUniversityPress,New York.

Borchers, J. O. (1999), Designing Interactive Music
Systems: A Pattern Approach, in H. Bullinger &
J. Ziegler (eds.), 8th International Conference on
Human-ComputerInteraction, Lawrence Erlbaum
Associates,London,pp.276–280.

Bradac, M. & Fletcher, B. (1998), A Pattern Language
for Developing Form Style Windows, in R. Martin,
D. Riehle& F. Buschmann(eds.),PatternLanguages
of Program Design 3, Addison-Wesley Longman,
Reading,MA, pp.347–357.

Breedvelt-Schouten,I. M., Paterńo, F. & Severijns, C. A.
(1997),ReusableStructuresin TaskModels,in H. D.
Harrison& J. C. Torres(eds.),Design,Specification
andVerificationof InteractiveSystems, Springer, New
York, pp.225–238.

Brighton Usability Group (2001), “The Brighton Patterns
Collection”. Maintainedby Griffiths, R. N. at http:
//www.it.bton.ac.uk/cil/usability/patterns/.Accessed
February18,2001.

Brooks Jr., F. P. (1995), The Mythical Man-Month, 20th
anniversaryedition,Addison-Wesley.

Coram, T. & Lee, J. (1996), Experiences— A Pattern
Language for User Interface Design, in Pattern
Languages of Program Design 1996 Proceedings.
http://www.maplefish.com/todd/papers/experiences/
Experiences.html.AccessedAugust5, 1999.

Cybulski, J. & Linden, T. (2000),ComposingMultimedia
Artif acts for Reuse, in N. Harrison, B. Foote &
H. Rohnert (eds.), Pattern Languages of Program
Design4, Addison-Wesley Longman,pp.461–488.

Dell (2001), “Dell Computer Website”.
http://www.dell.com.AccessedFebruary18,2001.

Fernandes, T. (1995), Global Interface Design, AP
Professional,ChesnutHill, MA.

Gamma,E., Helm, R., Johnson,R. & Vlissides,J. (1995),
Design Patterns: Elements of ReusableObject-
OrientedSoftware, Addison-Wesley, Reading,MA.

Grosjean,J. (1982), Life with Two Languages, Harvard
UniversityPress,Cambridge,MA.

Ito, M. & Nakakoji, K. (1996),Impactof Cultureon User
Interface Design, in E. M. del Galdo & J. Nielsen
(eds.),International User Interfaces, JohnWiley &
Sons,New York, chapter6, pp.105–126.

Kerth, N. L. & Cunningham,W. (1997), “Using Patterns
to ImproveOurArchitecturalVision”, IEEESoftware
14(1), 53–59.

Mahemoff, M. (2001), “Weaving High-Level and
Low-Level Patterns: An Extended Version
of the Planet Pattern Language”. Technical
Report 2001/21, CSSE Dept., University of
Melbourne. http://www.cs.mu.oz.au/trsubmit/test/
cover db/muTR 200121.html.

Mahemoff, M. J. & Johnston,L. J. (1999), The Planet
Pattern Languagefor Software Internationalisation,
in PatternLanguagesof Programs1999Proceedings,
Monticello, IL. http://jerry.cs.uiuc.edu/˜plop/plop99/
proceedings/.AccessedSeptember5, 1999.

Perzel, K. & Kane, D. (1999), Usability Patterns for
Applications on the World Wide Web, in Pattern
Languages of Program Design 1999 Proceedings,
Monticello, IL. http://jerry.cs.uiuc.edu/˜plop/plop99/
proceedings/.AccessedSeptember18,1999.

Riehle,D. & Züllighoven, H. (1995),A PatternLanguage
for Tool Constructionand Integration Basedon the
Tools and Materials Metaphor, in J. O. Coplien &
D. C. Schmidt(eds.),PatternLanguagesof Program
Design, Addison-Wesley, Reading,MA, pp.9–42.

Stimmel, C. L. (1999), Hold Me, Thrill Me, Kiss
Me, Kill Me: Patterns for Developing Effective
Concept Prototypes, in Pattern Languages of
Program Design1999 Proceedings, Monticello, IL.
http://jerry.cs.uiuc.edu/˜plop/plop99/proceedings/.
AccessedSeptember18,1999.

Sutcliffe, A. & Dimitrova, M. (1999), Patterns,Claims
and Multimedia, in M. A. Sasse& C. Johnson
(eds.), Human-ComputerInteraction: Interact ’99,
IOSPress(for IFIP), Amsterdam,pp.329–335.

Tidwell, J. (1998), Interaction Patterns, in Pattern
Languages of Program Design 1998 Proceedings,
Monticello, IL. http://jerry.cs.uiuc.edu/˜plop/plop98/
final˙submissions/.AccessedMarch30,1999.

Van Welie, M. & Traetteberg, H. (2000), Interaction
Patterns in User Interfaces, in Pattern Languages
of Programs 2000 Proceedings, Monticello, IL.
http://monkey.icu.ac.kr/sslab/proceeding/PLoP2000/-
papers/papersIndex.html. Accessed October 27,
2000.

Wake, W. C. (1998), “Patterns for Interactive
Applications”. http://jerry.cs.uiuc.edu/plop/plop98/
final˙submissions/.AccessedJune19,1999.

